Metamath Proof Explorer


Theorem imsmet

Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of Kreyszig p. 58. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses imsmet.1 X = BaseSet U
imsmet.8 D = IndMet U
Assertion imsmet U NrmCVec D Met X

Proof

Step Hyp Ref Expression
1 imsmet.1 X = BaseSet U
2 imsmet.8 D = IndMet U
3 fveq2 U = if U NrmCVec U + × abs IndMet U = IndMet if U NrmCVec U + × abs
4 fveq2 U = if U NrmCVec U + × abs BaseSet U = BaseSet if U NrmCVec U + × abs
5 1 4 eqtrid U = if U NrmCVec U + × abs X = BaseSet if U NrmCVec U + × abs
6 5 fveq2d U = if U NrmCVec U + × abs Met X = Met BaseSet if U NrmCVec U + × abs
7 3 6 eleq12d U = if U NrmCVec U + × abs IndMet U Met X IndMet if U NrmCVec U + × abs Met BaseSet if U NrmCVec U + × abs
8 eqid BaseSet if U NrmCVec U + × abs = BaseSet if U NrmCVec U + × abs
9 eqid + v if U NrmCVec U + × abs = + v if U NrmCVec U + × abs
10 eqid inv + v if U NrmCVec U + × abs = inv + v if U NrmCVec U + × abs
11 eqid 𝑠OLD if U NrmCVec U + × abs = 𝑠OLD if U NrmCVec U + × abs
12 eqid 0 vec if U NrmCVec U + × abs = 0 vec if U NrmCVec U + × abs
13 eqid norm CV if U NrmCVec U + × abs = norm CV if U NrmCVec U + × abs
14 eqid IndMet if U NrmCVec U + × abs = IndMet if U NrmCVec U + × abs
15 elimnvu if U NrmCVec U + × abs NrmCVec
16 8 9 10 11 12 13 14 15 imsmetlem IndMet if U NrmCVec U + × abs Met BaseSet if U NrmCVec U + × abs
17 7 16 dedth U NrmCVec IndMet U Met X
18 2 17 eqeltrid U NrmCVec D Met X