Metamath Proof Explorer


Theorem in4

Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001)

Ref Expression
Assertion in4 ABCD=ACBD

Proof

Step Hyp Ref Expression
1 in12 BCD=CBD
2 1 ineq2i ABCD=ACBD
3 inass ABCD=ABCD
4 inass ACBD=ACBD
5 2 3 4 3eqtr4i ABCD=ACBD