Database
BASIC TOPOLOGY
Topology
Examples of topologies
indisuni
Next ⟩
fctop
Metamath Proof Explorer
Ascii
Unicode
Theorem
indisuni
Description:
The base set of the indiscrete topology.
(Contributed by
Mario Carneiro
, 14-Aug-2015)
Ref
Expression
Assertion
indisuni
⊢
I
⁡
A
=
⋃
∅
A
Proof
Step
Hyp
Ref
Expression
1
indislem
⊢
∅
I
⁡
A
=
∅
A
2
fvex
⊢
I
⁡
A
∈
V
3
indistopon
⊢
I
⁡
A
∈
V
→
∅
I
⁡
A
∈
TopOn
⁡
I
⁡
A
4
2
3
ax-mp
⊢
∅
I
⁡
A
∈
TopOn
⁡
I
⁡
A
5
1
4
eqeltrri
⊢
∅
A
∈
TopOn
⁡
I
⁡
A
6
5
toponunii
⊢
I
⁡
A
=
⋃
∅
A