Metamath Proof Explorer


Theorem indislem

Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indislem IA=A

Proof

Step Hyp Ref Expression
1 fvi AVIA=A
2 1 preq2d AVIA=A
3 dfsn2 =
4 3 eqcomi =
5 fvprc ¬AVIA=
6 5 preq2d ¬AVIA=
7 prprc2 ¬AVA=
8 4 6 7 3eqtr4a ¬AVIA=A
9 2 8 pm2.61i IA=A