Metamath Proof Explorer


Theorem indisuni

Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indisuni IA=A

Proof

Step Hyp Ref Expression
1 indislem IA=A
2 fvex IAV
3 indistopon IAVIATopOnIA
4 2 3 ax-mp IATopOnIA
5 1 4 eqeltrri ATopOnIA
6 5 toponunii IA=A