Metamath Proof Explorer


Theorem inex1

Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of TakeutiZaring p. 22. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis inex1.1 AV
Assertion inex1 ABV

Proof

Step Hyp Ref Expression
1 inex1.1 AV
2 1 zfauscl xyyxyAyB
3 dfcleq x=AByyxyAB
4 elin yAByAyB
5 4 bibi2i yxyAByxyAyB
6 5 albii yyxyAByyxyAyB
7 3 6 bitri x=AByyxyAyB
8 7 exbii xx=ABxyyxyAyB
9 2 8 mpbir xx=AB
10 9 issetri ABV