Metamath Proof Explorer


Theorem inf2

Description: Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf as a hypothesis). Abbreviated version of the Axiom of Infinity in FreydScedrov p. 283. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypothesis inf1.1 xyxyyxzyzzx
Assertion inf2 xxxx

Proof

Step Hyp Ref Expression
1 inf1.1 xyxyyxzyzzx
2 1 inf1 xxyyxzyzzx
3 dfss2 xxyyxyx
4 eluni yxzyzzx
5 4 imbi2i yxyxyxzyzzx
6 5 albii yyxyxyyxzyzzx
7 3 6 bitri xxyyxzyzzx
8 7 anbi2i xxxxyyxzyzzx
9 8 exbii xxxxxxyyxzyzzx
10 2 9 mpbir xxxx