Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
infeq1d
Next ⟩
infeq1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
infeq1d
Description:
Equality deduction for infimum.
(Contributed by
AV
, 2-Sep-2020)
Ref
Expression
Hypothesis
infeq1d.1
⊢
φ
→
B
=
C
Assertion
infeq1d
⊢
φ
→
sup
B
A
R
=
sup
C
A
R
Proof
Step
Hyp
Ref
Expression
1
infeq1d.1
⊢
φ
→
B
=
C
2
infeq1
⊢
B
=
C
→
sup
B
A
R
=
sup
C
A
R
3
1
2
syl
⊢
φ
→
sup
B
A
R
=
sup
C
A
R