Metamath Proof Explorer


Theorem infxpdom

Description: Dominance law for multiplication with an infinite cardinal. (Contributed by NM, 26-Mar-2006) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infxpdom AdomcardωABAA×BA

Proof

Step Hyp Ref Expression
1 xpdom2g AdomcardBAA×BA×A
2 1 3adant2 AdomcardωABAA×BA×A
3 infxpidm2 AdomcardωAA×AA
4 3 3adant3 AdomcardωABAA×AA
5 domentr A×BA×AA×AAA×BA
6 2 4 5 syl2anc AdomcardωABAA×BA