Metamath Proof Explorer


Theorem infxrrnmptcl

Description: The infimum of an arbitrary indexed set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses infxrrnmptcl.1 x φ
infxrrnmptcl.2 φ x A B *
Assertion infxrrnmptcl φ sup ran x A B * < *

Proof

Step Hyp Ref Expression
1 infxrrnmptcl.1 x φ
2 infxrrnmptcl.2 φ x A B *
3 eqid x A B = x A B
4 1 3 2 rnmptssd φ ran x A B *
5 4 infxrcld φ sup ran x A B * < *