Metamath Proof Explorer


Theorem infxrrnmptcl

Description: The infimum of an arbitrary indexed set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses infxrrnmptcl.1 𝑥 𝜑
infxrrnmptcl.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
Assertion infxrrnmptcl ( 𝜑 → inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 infxrrnmptcl.1 𝑥 𝜑
2 infxrrnmptcl.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
3 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
4 1 3 2 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ* )
5 4 infxrcld ( 𝜑 → inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ∈ ℝ* )