Description: The infimum of an arbitrary indexed set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infxrrnmptcl.1 | ⊢ Ⅎ 𝑥 𝜑 | |
infxrrnmptcl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) | ||
Assertion | infxrrnmptcl | ⊢ ( 𝜑 → inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrrnmptcl.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | infxrrnmptcl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) | |
3 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
4 | 1 3 2 | rnmptssd | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ* ) |
5 | 4 | infxrcld | ⊢ ( 𝜑 → inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |