Metamath Proof Explorer


Theorem inindif

Description: See inundif . (Contributed by Thierry Arnoux, 13-Sep-2017)

Ref Expression
Assertion inindif ACAC=

Proof

Step Hyp Ref Expression
1 inss2 ACC
2 1 orci ACCAC
3 inss ACCACACAC
4 2 3 ax-mp ACAC
5 inssdif0 ACACACAC=
6 4 5 mpbi ACAC=