Metamath Proof Explorer


Theorem difininv

Description: Condition for the intersections of two sets with a given set to be equal. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Assertion difininv A C B = C A B = A B = C B

Proof

Step Hyp Ref Expression
1 indif1 A C B = A B C
2 1 eqeq1i A C B = A B C =
3 ssdif0 A B C A B C =
4 2 3 sylbb2 A C B = A B C
5 4 adantr A C B = C A B = A B C
6 inss2 A B B
7 6 a1i A C B = C A B = A B B
8 5 7 ssind A C B = C A B = A B C B
9 indif1 C A B = C B A
10 9 eqeq1i C A B = C B A =
11 ssdif0 C B A C B A =
12 10 11 sylbb2 C A B = C B A
13 12 adantl A C B = C A B = C B A
14 inss2 C B B
15 14 a1i A C B = C A B = C B B
16 13 15 ssind A C B = C A B = C B A B
17 8 16 eqssd A C B = C A B = A B = C B