Metamath Proof Explorer


Theorem difeq

Description: Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017)

Ref Expression
Assertion difeq AB=CCB=CB=AB

Proof

Step Hyp Ref Expression
1 ineq1 AB=CABB=CB
2 disjdifr ABB=
3 1 2 eqtr3di AB=CCB=
4 uneq1 AB=CABB=CB
5 undif1 ABB=AB
6 4 5 eqtr3di AB=CCB=AB
7 3 6 jca AB=CCB=CB=AB
8 simpl CB=CB=ABCB=
9 disj3 CB=C=CB
10 eqcom C=CBCB=C
11 9 10 bitri CB=CB=C
12 8 11 sylib CB=CB=ABCB=C
13 difeq1 CB=ABCBB=ABB
14 difun2 CBB=CB
15 difun2 ABB=AB
16 13 14 15 3eqtr3g CB=ABCB=AB
17 16 eqeq1d CB=ABCB=CAB=C
18 17 adantl CB=CB=ABCB=CAB=C
19 12 18 mpbid CB=CB=ABAB=C
20 7 19 impbii AB=CCB=CB=AB