| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indif1 |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) |
| 2 |
1
|
eqeq1i |
⊢ ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ ↔ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) = ∅ ) |
| 3 |
|
ssdif0 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ↔ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) = ∅ ) |
| 4 |
2 3
|
sylbb2 |
⊢ ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) |
| 5 |
4
|
adantr |
⊢ ( ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ ∧ ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) |
| 6 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 7 |
6
|
a1i |
⊢ ( ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ ∧ ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) |
| 8 |
5 7
|
ssind |
⊢ ( ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ ∧ ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐵 ) ) |
| 9 |
|
indif1 |
⊢ ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ( ( 𝐶 ∩ 𝐵 ) ∖ 𝐴 ) |
| 10 |
9
|
eqeq1i |
⊢ ( ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ ↔ ( ( 𝐶 ∩ 𝐵 ) ∖ 𝐴 ) = ∅ ) |
| 11 |
|
ssdif0 |
⊢ ( ( 𝐶 ∩ 𝐵 ) ⊆ 𝐴 ↔ ( ( 𝐶 ∩ 𝐵 ) ∖ 𝐴 ) = ∅ ) |
| 12 |
10 11
|
sylbb2 |
⊢ ( ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ → ( 𝐶 ∩ 𝐵 ) ⊆ 𝐴 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ ∧ ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ ) → ( 𝐶 ∩ 𝐵 ) ⊆ 𝐴 ) |
| 14 |
|
inss2 |
⊢ ( 𝐶 ∩ 𝐵 ) ⊆ 𝐵 |
| 15 |
14
|
a1i |
⊢ ( ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ ∧ ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ ) → ( 𝐶 ∩ 𝐵 ) ⊆ 𝐵 ) |
| 16 |
13 15
|
ssind |
⊢ ( ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ ∧ ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ ) → ( 𝐶 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 17 |
8 16
|
eqssd |
⊢ ( ( ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐵 ) = ∅ ∧ ( ( 𝐶 ∖ 𝐴 ) ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∩ 𝐵 ) = ( 𝐶 ∩ 𝐵 ) ) |