| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indif1 |
|- ( ( A \ C ) i^i B ) = ( ( A i^i B ) \ C ) |
| 2 |
1
|
eqeq1i |
|- ( ( ( A \ C ) i^i B ) = (/) <-> ( ( A i^i B ) \ C ) = (/) ) |
| 3 |
|
ssdif0 |
|- ( ( A i^i B ) C_ C <-> ( ( A i^i B ) \ C ) = (/) ) |
| 4 |
2 3
|
sylbb2 |
|- ( ( ( A \ C ) i^i B ) = (/) -> ( A i^i B ) C_ C ) |
| 5 |
4
|
adantr |
|- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) ) -> ( A i^i B ) C_ C ) |
| 6 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 7 |
6
|
a1i |
|- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) ) -> ( A i^i B ) C_ B ) |
| 8 |
5 7
|
ssind |
|- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) ) -> ( A i^i B ) C_ ( C i^i B ) ) |
| 9 |
|
indif1 |
|- ( ( C \ A ) i^i B ) = ( ( C i^i B ) \ A ) |
| 10 |
9
|
eqeq1i |
|- ( ( ( C \ A ) i^i B ) = (/) <-> ( ( C i^i B ) \ A ) = (/) ) |
| 11 |
|
ssdif0 |
|- ( ( C i^i B ) C_ A <-> ( ( C i^i B ) \ A ) = (/) ) |
| 12 |
10 11
|
sylbb2 |
|- ( ( ( C \ A ) i^i B ) = (/) -> ( C i^i B ) C_ A ) |
| 13 |
12
|
adantl |
|- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) ) -> ( C i^i B ) C_ A ) |
| 14 |
|
inss2 |
|- ( C i^i B ) C_ B |
| 15 |
14
|
a1i |
|- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) ) -> ( C i^i B ) C_ B ) |
| 16 |
13 15
|
ssind |
|- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) ) -> ( C i^i B ) C_ ( A i^i B ) ) |
| 17 |
8 16
|
eqssd |
|- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) ) -> ( A i^i B ) = ( C i^i B ) ) |