Metamath Proof Explorer


Theorem inres2

Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021)

Ref Expression
Assertion inres2 RAS=RSA

Proof

Step Hyp Ref Expression
1 inres SRA=SRA
2 1 ineqcomi RAS=SRA
3 incom RS=SR
4 3 reseq1i RSA=SRA
5 2 4 eqtr4i RAS=RSA