Metamath Proof Explorer


Theorem intex

Description: The intersection of a nonempty class exists. Exercise 5 of TakeutiZaring p. 44 and its converse. (Contributed by NM, 13-Aug-2002)

Ref Expression
Assertion intex AAV

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 intss1 xAAx
3 vex xV
4 3 ssex AxAV
5 2 4 syl xAAV
6 5 exlimiv xxAAV
7 1 6 sylbi AAV
8 vprc ¬VV
9 inteq A=A=
10 int0 =V
11 9 10 eqtrdi A=A=V
12 11 eleq1d A=AVVV
13 8 12 mtbiri A=¬AV
14 13 necon2ai AVA
15 7 14 impbii AAV