Metamath Proof Explorer


Theorem intnan

Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993)

Ref Expression
Hypothesis intnan.1 ¬φ
Assertion intnan ¬ψφ

Proof

Step Hyp Ref Expression
1 intnan.1 ¬φ
2 simpr ψφφ
3 1 2 mto ¬ψφ