Metamath Proof Explorer


Theorem intnanr

Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995)

Ref Expression
Hypothesis intnan.1 ¬φ
Assertion intnanr ¬φψ

Proof

Step Hyp Ref Expression
1 intnan.1 ¬φ
2 simpl φψφ
3 1 2 mto ¬φψ