Metamath Proof Explorer
Description: An element of a closed interval is greater than its lower bound.
(Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
ioogtlbd.1 |
|
|
|
ioogtlbd.2 |
|
|
|
ioogtlbd.3 |
|
|
Assertion |
ioogtlbd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioogtlbd.1 |
|
| 2 |
|
ioogtlbd.2 |
|
| 3 |
|
ioogtlbd.3 |
|
| 4 |
|
ioogtlb |
|
| 5 |
1 2 3 4
|
syl3anc |
|