Metamath Proof Explorer


Theorem iooid

Description: An open interval with identical lower and upper bounds is empty. (Contributed by NM, 21-Jun-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooid AA=

Proof

Step Hyp Ref Expression
1 xrleid A*AA
2 1 adantr A*A*AA
3 ioo0 A*A*AA=AA
4 2 3 mpbird A*A*AA=
5 ndmioo ¬A*A*AA=
6 4 5 pm2.61i AA=