Metamath Proof Explorer


Theorem ioopos

Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007)

Ref Expression
Assertion ioopos 0+∞=x|0<x

Proof

Step Hyp Ref Expression
1 0xr 0*
2 pnfxr +∞*
3 iooval2 0*+∞*0+∞=x|0<xx<+∞
4 1 2 3 mp2an 0+∞=x|0<xx<+∞
5 ltpnf xx<+∞
6 5 biantrud x0<x0<xx<+∞
7 6 rabbiia x|0<x=x|0<xx<+∞
8 4 7 eqtr4i 0+∞=x|0<x