Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioopos | ⊢ ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | iooval2 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ ( 0 < 𝑥 ∧ 𝑥 < +∞ ) } ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ ( 0 < 𝑥 ∧ 𝑥 < +∞ ) } |
| 5 | ltpnf | ⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) | |
| 6 | 5 | biantrud | ⊢ ( 𝑥 ∈ ℝ → ( 0 < 𝑥 ↔ ( 0 < 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 7 | 6 | rabbiia | ⊢ { 𝑥 ∈ ℝ ∣ 0 < 𝑥 } = { 𝑥 ∈ ℝ ∣ ( 0 < 𝑥 ∧ 𝑥 < +∞ ) } |
| 8 | 4 7 | eqtr4i | ⊢ ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 } |