Metamath Proof Explorer


Theorem iotavalsb

Description: Theorem *14.242 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotavalsb xφx=y[˙y/z]˙ψ[˙ιx|φ/z]˙ψ

Proof

Step Hyp Ref Expression
1 19.8a xφx=yyxφx=y
2 eu6 ∃!xφyxφx=y
3 iotavalb ∃!xφxφx=yιx|φ=y
4 dfsbcq y=ιx|φ[˙y/z]˙ψ[˙ιx|φ/z]˙ψ
5 4 eqcoms ιx|φ=y[˙y/z]˙ψ[˙ιx|φ/z]˙ψ
6 3 5 syl6bi ∃!xφxφx=y[˙y/z]˙ψ[˙ιx|φ/z]˙ψ
7 2 6 sylbir yxφx=yxφx=y[˙y/z]˙ψ[˙ιx|φ/z]˙ψ
8 1 7 mpcom xφx=y[˙y/z]˙ψ[˙ιx|φ/z]˙ψ