| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 19.8a | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) | 
						
							| 2 |  | eu6 | ⊢ ( ∃! 𝑥 𝜑  ↔  ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) | 
						
							| 3 |  | iotavalb | ⊢ ( ∃! 𝑥 𝜑  →  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ↔  ( ℩ 𝑥 𝜑 )  =  𝑦 ) ) | 
						
							| 4 |  | dfsbcq | ⊢ ( 𝑦  =  ( ℩ 𝑥 𝜑 )  →  ( [ 𝑦  /  𝑧 ] 𝜓  ↔  [ ( ℩ 𝑥 𝜑 )  /  𝑧 ] 𝜓 ) ) | 
						
							| 5 | 4 | eqcoms | ⊢ ( ( ℩ 𝑥 𝜑 )  =  𝑦  →  ( [ 𝑦  /  𝑧 ] 𝜓  ↔  [ ( ℩ 𝑥 𝜑 )  /  𝑧 ] 𝜓 ) ) | 
						
							| 6 | 3 5 | biimtrdi | ⊢ ( ∃! 𝑥 𝜑  →  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ( [ 𝑦  /  𝑧 ] 𝜓  ↔  [ ( ℩ 𝑥 𝜑 )  /  𝑧 ] 𝜓 ) ) ) | 
						
							| 7 | 2 6 | sylbir | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ( [ 𝑦  /  𝑧 ] 𝜓  ↔  [ ( ℩ 𝑥 𝜑 )  /  𝑧 ] 𝜓 ) ) ) | 
						
							| 8 | 1 7 | mpcom | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ( [ 𝑦  /  𝑧 ] 𝜓  ↔  [ ( ℩ 𝑥 𝜑 )  /  𝑧 ] 𝜓 ) ) |