Metamath Proof Explorer


Theorem ipsbase

Description: The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
Assertion ipsbase BVB=BaseA

Proof

Step Hyp Ref Expression
1 ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
2 1 ipsstr AStruct18
3 baseid Base=SlotBasendx
4 snsstp1 BasendxBBasendxB+ndx+˙ndx×˙
5 ssun1 BasendxB+ndx+˙ndx×˙BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
6 5 1 sseqtrri BasendxB+ndx+˙ndx×˙A
7 4 6 sstri BasendxBA
8 2 3 7 strfv BVB=BaseA