Metamath Proof Explorer


Theorem ipsbase

Description: The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a 𝐴 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } )
Assertion ipsbase ( 𝐵𝑉𝐵 = ( Base ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ipspart.a 𝐴 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } )
2 1 ipsstr 𝐴 Struct ⟨ 1 , 8 ⟩
3 baseid Base = Slot ( Base ‘ ndx )
4 snsstp1 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ }
5 ssun1 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } )
6 5 1 sseqtrri { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ⊆ 𝐴
7 4 6 sstri { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ } ⊆ 𝐴
8 2 3 7 strfv ( 𝐵𝑉𝐵 = ( Base ‘ 𝐴 ) )