Metamath Proof Explorer


Theorem irec

Description: The reciprocal of _i . (Contributed by NM, 11-Oct-1999)

Ref Expression
Assertion irec 1i=i

Proof

Step Hyp Ref Expression
1 ax-icn i
2 1 1 mulneg2i ii=ii
3 ixi ii=1
4 ax-1cn 1
5 1 1 mulcli ii
6 4 5 negcon2i 1=iiii=1
7 3 6 mpbir 1=ii
8 2 7 eqtr4i ii=1
9 negicn i
10 ine0 i0
11 4 1 9 10 divmuli 1i=iii=1
12 8 11 mpbir 1i=i