Metamath Proof Explorer


Theorem irredcl

Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I=IrredR
irredcl.b B=BaseR
Assertion irredcl XIXB

Proof

Step Hyp Ref Expression
1 irredn0.i I=IrredR
2 irredcl.b B=BaseR
3 eqid UnitR=UnitR
4 eqid R=R
5 2 3 1 4 isirred2 XIXB¬XUnitRxByBxRy=XxUnitRyUnitR
6 5 simp1bi XIXB