Metamath Proof Explorer
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013)
|
|
Ref |
Expression |
|
Hypotheses |
isabld.b |
|
|
|
isabld.p |
|
|
|
isabld.g |
|
|
|
isabld.c |
|
|
Assertion |
isabld |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isabld.b |
|
| 2 |
|
isabld.p |
|
| 3 |
|
isabld.g |
|
| 4 |
|
isabld.c |
|
| 5 |
3
|
grpmndd |
|
| 6 |
1 2 5 4
|
iscmnd |
|
| 7 |
|
isabl |
|
| 8 |
3 6 7
|
sylanbrc |
|