Metamath Proof Explorer


Theorem isarep1

Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by ph ( x , y ) i.e. the class ( { <. x , y >. | ph } " A ) . If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006) (Proof shortened by Mario Carneiro, 4-Dec-2016) (Proof shortened by SN, 19-Dec-2024)

Ref Expression
Assertion isarep1 bxy|φAxAbyφ

Proof

Step Hyp Ref Expression
1 vex bV
2 1 elima bxy|φAzAzxy|φb
3 df-br zxy|φbzbxy|φ
4 vopelopabsb zbxy|φzxbyφ
5 3 4 bitri zxy|φbzxbyφ
6 5 rexbii zAzxy|φbzAzxbyφ
7 nfs1v xzxbyφ
8 nfv zbyφ
9 sbequ12r z=xzxbyφbyφ
10 7 8 9 cbvrexw zAzxbyφxAbyφ
11 2 6 10 3bitri bxy|φAxAbyφ