Metamath Proof Explorer


Theorem isf32lem12

Description: Lemma for isfin3-2 . (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis isf32lem40.f F=g|a𝒫gωxωasucxaxranarana
Assertion isf32lem12 GV¬ω*GGF

Proof

Step Hyp Ref Expression
1 isf32lem40.f F=g|a𝒫gωxωasucxaxranarana
2 elmapi f𝒫Gωf:ω𝒫G
3 isf32lem11 GVf:ω𝒫Gbωfsucbfb¬ranfranfω*G
4 3 expcom f:ω𝒫Gbωfsucbfb¬ranfranfGVω*G
5 4 3expa f:ω𝒫Gbωfsucbfb¬ranfranfGVω*G
6 5 impancom f:ω𝒫GbωfsucbfbGV¬ranfranfω*G
7 6 con1d f:ω𝒫GbωfsucbfbGV¬ω*Granfranf
8 7 exp31 f:ω𝒫GbωfsucbfbGV¬ω*Granfranf
9 2 8 syl f𝒫GωbωfsucbfbGV¬ω*Granfranf
10 9 com4t GV¬ω*Gf𝒫Gωbωfsucbfbranfranf
11 10 ralrimdv GV¬ω*Gf𝒫Gωbωfsucbfbranfranf
12 1 isfin3ds GVGFf𝒫Gωbωfsucbfbranfranf
13 11 12 sylibrd GV¬ω*GGF