Metamath Proof Explorer


Theorem isgim2

Description: A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo . (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion isgim2 FRGrpIsoSFRGrpHomSF-1SGrpHomR

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid BaseS=BaseS
3 1 2 isgim FRGrpIsoSFRGrpHomSF:BaseR1-1 ontoBaseS
4 1 2 ghmf1o FRGrpHomSF:BaseR1-1 ontoBaseSF-1SGrpHomR
5 4 pm5.32i FRGrpHomSF:BaseR1-1 ontoBaseSFRGrpHomSF-1SGrpHomR
6 3 5 bitri FRGrpIsoSFRGrpHomSF-1SGrpHomR