Metamath Proof Explorer


Theorem isgim2

Description: A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo . (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion isgim2 ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
3 1 2 isgim ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) )
4 1 2 ghmf1o ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) )
5 4 pm5.32i ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) )
6 3 5 bitri ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) )