Metamath Proof Explorer


Theorem ghmf1o

Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses ghmf1o.x 𝑋 = ( Base ‘ 𝑆 )
ghmf1o.y 𝑌 = ( Base ‘ 𝑇 )
Assertion ghmf1o ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋1-1-onto𝑌 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 ghmf1o.x 𝑋 = ( Base ‘ 𝑆 )
2 ghmf1o.y 𝑌 = ( Base ‘ 𝑇 )
3 ghmgrp2 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp )
4 ghmgrp1 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp )
5 3 4 jca ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) )
6 5 adantr ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) → ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) )
7 f1ocnv ( 𝐹 : 𝑋1-1-onto𝑌 𝐹 : 𝑌1-1-onto𝑋 )
8 7 adantl ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) → 𝐹 : 𝑌1-1-onto𝑋 )
9 f1of ( 𝐹 : 𝑌1-1-onto𝑋 𝐹 : 𝑌𝑋 )
10 8 9 syl ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) → 𝐹 : 𝑌𝑋 )
11 simpll ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )
12 10 adantr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → 𝐹 : 𝑌𝑋 )
13 simprl ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → 𝑥𝑌 )
14 12 13 ffvelrnd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝐹𝑥 ) ∈ 𝑋 )
15 simprr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → 𝑦𝑌 )
16 12 15 ffvelrnd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝐹𝑦 ) ∈ 𝑋 )
17 eqid ( +g𝑆 ) = ( +g𝑆 )
18 eqid ( +g𝑇 ) = ( +g𝑇 )
19 1 17 18 ghmlin ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝐹𝑥 ) ∈ 𝑋 ∧ ( 𝐹𝑦 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) ( +g𝑇 ) ( 𝐹 ‘ ( 𝐹𝑦 ) ) ) )
20 11 14 16 19 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) ( +g𝑇 ) ( 𝐹 ‘ ( 𝐹𝑦 ) ) ) )
21 simplr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → 𝐹 : 𝑋1-1-onto𝑌 )
22 f1ocnvfv2 ( ( 𝐹 : 𝑋1-1-onto𝑌𝑥𝑌 ) → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = 𝑥 )
23 21 13 22 syl2anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = 𝑥 )
24 f1ocnvfv2 ( ( 𝐹 : 𝑋1-1-onto𝑌𝑦𝑌 ) → ( 𝐹 ‘ ( 𝐹𝑦 ) ) = 𝑦 )
25 21 15 24 syl2anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝐹 ‘ ( 𝐹𝑦 ) ) = 𝑦 )
26 23 25 oveq12d ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) ( +g𝑇 ) ( 𝐹 ‘ ( 𝐹𝑦 ) ) ) = ( 𝑥 ( +g𝑇 ) 𝑦 ) )
27 20 26 eqtrd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) = ( 𝑥 ( +g𝑇 ) 𝑦 ) )
28 11 4 syl ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → 𝑆 ∈ Grp )
29 1 17 grpcl ( ( 𝑆 ∈ Grp ∧ ( 𝐹𝑥 ) ∈ 𝑋 ∧ ( 𝐹𝑦 ) ∈ 𝑋 ) → ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ∈ 𝑋 )
30 28 14 16 29 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ∈ 𝑋 )
31 f1ocnvfv ( ( 𝐹 : 𝑋1-1-onto𝑌 ∧ ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) = ( 𝑥 ( +g𝑇 ) 𝑦 ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑇 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) )
32 21 30 31 syl2anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) = ( 𝑥 ( +g𝑇 ) 𝑦 ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑇 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) )
33 27 32 mpd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑇 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) )
34 33 ralrimivva ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) → ∀ 𝑥𝑌𝑦𝑌 ( 𝐹 ‘ ( 𝑥 ( +g𝑇 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) )
35 10 34 jca ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) → ( 𝐹 : 𝑌𝑋 ∧ ∀ 𝑥𝑌𝑦𝑌 ( 𝐹 ‘ ( 𝑥 ( +g𝑇 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) )
36 2 1 18 17 isghm ( 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ ( ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( 𝐹 : 𝑌𝑋 ∧ ∀ 𝑥𝑌𝑦𝑌 ( 𝐹 ‘ ( 𝑥 ( +g𝑇 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) ) )
37 6 35 36 sylanbrc ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) → 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) )
38 1 2 ghmf ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑋𝑌 )
39 38 adantr ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 : 𝑋𝑌 )
40 39 ffnd ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 Fn 𝑋 )
41 2 1 ghmf ( 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) → 𝐹 : 𝑌𝑋 )
42 41 adantl ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 : 𝑌𝑋 )
43 42 ffnd ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 Fn 𝑌 )
44 dff1o4 ( 𝐹 : 𝑋1-1-onto𝑌 ↔ ( 𝐹 Fn 𝑋 𝐹 Fn 𝑌 ) )
45 40 43 44 sylanbrc ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 : 𝑋1-1-onto𝑌 )
46 37 45 impbida ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋1-1-onto𝑌 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) )