| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conjghm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
conjghm.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
conjghm.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
conjghm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 7 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 + 𝑥 ) ∈ 𝑋 ) |
| 8 |
7
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 + 𝑥 ) ∈ 𝑋 ) |
| 9 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 10 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝑥 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ 𝑋 ) |
| 11 |
6 8 9 10
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ 𝑋 ) |
| 12 |
11 4
|
fmptd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑋 ) |
| 13 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 15 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 16 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 + 𝑦 ) ∈ 𝑋 ) |
| 17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐴 + 𝑦 ) ∈ 𝑋 ) |
| 18 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝑦 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 + 𝑦 ) − 𝐴 ) ∈ 𝑋 ) |
| 19 |
13 17 14 18
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑦 ) − 𝐴 ) ∈ 𝑋 ) |
| 20 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 21 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑧 − 𝐴 ) ∈ 𝑋 ) |
| 22 |
13 20 14 21
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 − 𝐴 ) ∈ 𝑋 ) |
| 23 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑧 − 𝐴 ) ∈ 𝑋 ) ) → ( ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) + ( 𝑧 − 𝐴 ) ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) ) |
| 24 |
13 19 14 22 23
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) + ( 𝑧 − 𝐴 ) ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) ) |
| 25 |
1 2 3
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝑦 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) = ( 𝐴 + 𝑦 ) ) |
| 26 |
13 17 14 25
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) = ( 𝐴 + 𝑦 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) + ( 𝑧 − 𝐴 ) ) = ( ( 𝐴 + 𝑦 ) + ( 𝑧 − 𝐴 ) ) ) |
| 28 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐴 + 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) + 𝑧 ) − 𝐴 ) = ( ( 𝐴 + 𝑦 ) + ( 𝑧 − 𝐴 ) ) ) |
| 29 |
13 17 20 14 28
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) + 𝑧 ) − 𝐴 ) = ( ( 𝐴 + 𝑦 ) + ( 𝑧 − 𝐴 ) ) ) |
| 30 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑦 ) + 𝑧 ) = ( 𝐴 + ( 𝑦 + 𝑧 ) ) ) |
| 31 |
13 14 15 20 30
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑦 ) + 𝑧 ) = ( 𝐴 + ( 𝑦 + 𝑧 ) ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) + 𝑧 ) − 𝐴 ) = ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ) |
| 33 |
27 29 32
|
3eqtr2rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) = ( ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) + ( 𝑧 − 𝐴 ) ) ) |
| 34 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑧 ) − 𝐴 ) = ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) |
| 35 |
13 14 20 14 34
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑧 ) − 𝐴 ) = ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) ) |
| 37 |
24 33 36
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) ) |
| 38 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 + 𝑧 ) ∈ 𝑋 ) |
| 39 |
13 15 20 38
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑋 ) |
| 40 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( 𝑦 + 𝑧 ) ) ) |
| 41 |
40
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ) |
| 42 |
|
ovex |
⊢ ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ∈ V |
| 43 |
41 4 42
|
fvmpt |
⊢ ( ( 𝑦 + 𝑧 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ) |
| 44 |
39 43
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ) |
| 45 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝑦 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + 𝑦 ) − 𝐴 ) ) |
| 47 |
|
ovex |
⊢ ( ( 𝐴 + 𝑦 ) − 𝐴 ) ∈ V |
| 48 |
46 4 47
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( ( 𝐴 + 𝑦 ) − 𝐴 ) ) |
| 49 |
48
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝐴 + 𝑦 ) − 𝐴 ) ) |
| 50 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝑧 ) ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) |
| 52 |
|
ovex |
⊢ ( ( 𝐴 + 𝑧 ) − 𝐴 ) ∈ V |
| 53 |
51 4 52
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑧 ) = ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) |
| 54 |
53
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) |
| 55 |
49 54
|
oveq12d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) ) |
| 56 |
37 44 55
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ) |
| 57 |
1 1 2 2 5 5 12 56
|
isghmd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 58 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 59 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 60 |
1 59
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 62 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
| 63 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 64 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 + 𝐴 ) ∈ 𝑋 ) |
| 65 |
58 62 63 64
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 + 𝐴 ) ∈ 𝑋 ) |
| 66 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝑦 + 𝐴 ) ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) ∈ 𝑋 ) |
| 67 |
58 61 65 66
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) ∈ 𝑋 ) |
| 68 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 69 |
65
|
adantrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 + 𝐴 ) ∈ 𝑋 ) |
| 70 |
8
|
adantrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐴 + 𝑥 ) ∈ 𝑋 ) |
| 71 |
60
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 72 |
1 2
|
grplcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑦 + 𝐴 ) ∈ 𝑋 ∧ ( 𝐴 + 𝑥 ) ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ↔ ( 𝑦 + 𝐴 ) = ( 𝐴 + 𝑥 ) ) ) |
| 73 |
68 69 70 71 72
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ↔ ( 𝑦 + 𝐴 ) = ( 𝐴 + 𝑥 ) ) ) |
| 74 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 75 |
1 2 74 59
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 77 |
76
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) + 𝑥 ) = ( ( 0g ‘ 𝐺 ) + 𝑥 ) ) |
| 78 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 79 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
| 80 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) + 𝑥 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ) |
| 81 |
68 71 78 79 80
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) + 𝑥 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ) |
| 82 |
1 2 74
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) |
| 83 |
82
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) |
| 84 |
77 81 83
|
3eqtr3rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ) |
| 85 |
84
|
eqeq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = 𝑥 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ) ) |
| 86 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 87 |
1 2 3
|
grpsubadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐴 + 𝑥 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑥 ) − 𝐴 ) = 𝑦 ↔ ( 𝑦 + 𝐴 ) = ( 𝐴 + 𝑥 ) ) ) |
| 88 |
68 70 78 86 87
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑥 ) − 𝐴 ) = 𝑦 ↔ ( 𝑦 + 𝐴 ) = ( 𝐴 + 𝑥 ) ) ) |
| 89 |
73 85 88
|
3bitr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = 𝑥 ↔ ( ( 𝐴 + 𝑥 ) − 𝐴 ) = 𝑦 ) ) |
| 90 |
|
eqcom |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = 𝑥 ) |
| 91 |
|
eqcom |
⊢ ( 𝑦 = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ↔ ( ( 𝐴 + 𝑥 ) − 𝐴 ) = 𝑦 ) |
| 92 |
89 90 91
|
3bitr4g |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) ↔ 𝑦 = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ) |
| 93 |
4 11 67 92
|
f1o2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑋 ) |
| 94 |
57 93
|
jca |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑋 ) ) |