Metamath Proof Explorer


Theorem conjghm

Description: Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses conjghm.x X=BaseG
conjghm.p +˙=+G
conjghm.m -˙=-G
conjghm.f F=xXA+˙x-˙A
Assertion conjghm GGrpAXFGGrpHomGF:X1-1 ontoX

Proof

Step Hyp Ref Expression
1 conjghm.x X=BaseG
2 conjghm.p +˙=+G
3 conjghm.m -˙=-G
4 conjghm.f F=xXA+˙x-˙A
5 simpl GGrpAXGGrp
6 5 adantr GGrpAXxXGGrp
7 1 2 grpcl GGrpAXxXA+˙xX
8 7 3expa GGrpAXxXA+˙xX
9 simplr GGrpAXxXAX
10 1 3 grpsubcl GGrpA+˙xXAXA+˙x-˙AX
11 6 8 9 10 syl3anc GGrpAXxXA+˙x-˙AX
12 11 4 fmptd GGrpAXF:XX
13 5 adantr GGrpAXyXzXGGrp
14 simplr GGrpAXyXzXAX
15 simprl GGrpAXyXzXyX
16 1 2 grpcl GGrpAXyXA+˙yX
17 13 14 15 16 syl3anc GGrpAXyXzXA+˙yX
18 1 3 grpsubcl GGrpA+˙yXAXA+˙y-˙AX
19 13 17 14 18 syl3anc GGrpAXyXzXA+˙y-˙AX
20 simprr GGrpAXyXzXzX
21 1 3 grpsubcl GGrpzXAXz-˙AX
22 13 20 14 21 syl3anc GGrpAXyXzXz-˙AX
23 1 2 grpass GGrpA+˙y-˙AXAXz-˙AXA+˙y-˙A+˙A+˙z-˙A=A+˙y-˙A+˙A+˙z-˙A
24 13 19 14 22 23 syl13anc GGrpAXyXzXA+˙y-˙A+˙A+˙z-˙A=A+˙y-˙A+˙A+˙z-˙A
25 1 2 3 grpnpcan GGrpA+˙yXAXA+˙y-˙A+˙A=A+˙y
26 13 17 14 25 syl3anc GGrpAXyXzXA+˙y-˙A+˙A=A+˙y
27 26 oveq1d GGrpAXyXzXA+˙y-˙A+˙A+˙z-˙A=A+˙y+˙z-˙A
28 1 2 3 grpaddsubass GGrpA+˙yXzXAXA+˙y+˙z-˙A=A+˙y+˙z-˙A
29 13 17 20 14 28 syl13anc GGrpAXyXzXA+˙y+˙z-˙A=A+˙y+˙z-˙A
30 1 2 grpass GGrpAXyXzXA+˙y+˙z=A+˙y+˙z
31 13 14 15 20 30 syl13anc GGrpAXyXzXA+˙y+˙z=A+˙y+˙z
32 31 oveq1d GGrpAXyXzXA+˙y+˙z-˙A=A+˙y+˙z-˙A
33 27 29 32 3eqtr2rd GGrpAXyXzXA+˙y+˙z-˙A=A+˙y-˙A+˙A+˙z-˙A
34 1 2 3 grpaddsubass GGrpAXzXAXA+˙z-˙A=A+˙z-˙A
35 13 14 20 14 34 syl13anc GGrpAXyXzXA+˙z-˙A=A+˙z-˙A
36 35 oveq2d GGrpAXyXzXA+˙y-˙A+˙A+˙z-˙A=A+˙y-˙A+˙A+˙z-˙A
37 24 33 36 3eqtr4d GGrpAXyXzXA+˙y+˙z-˙A=A+˙y-˙A+˙A+˙z-˙A
38 1 2 grpcl GGrpyXzXy+˙zX
39 13 15 20 38 syl3anc GGrpAXyXzXy+˙zX
40 oveq2 x=y+˙zA+˙x=A+˙y+˙z
41 40 oveq1d x=y+˙zA+˙x-˙A=A+˙y+˙z-˙A
42 ovex A+˙y+˙z-˙AV
43 41 4 42 fvmpt y+˙zXFy+˙z=A+˙y+˙z-˙A
44 39 43 syl GGrpAXyXzXFy+˙z=A+˙y+˙z-˙A
45 oveq2 x=yA+˙x=A+˙y
46 45 oveq1d x=yA+˙x-˙A=A+˙y-˙A
47 ovex A+˙y-˙AV
48 46 4 47 fvmpt yXFy=A+˙y-˙A
49 48 ad2antrl GGrpAXyXzXFy=A+˙y-˙A
50 oveq2 x=zA+˙x=A+˙z
51 50 oveq1d x=zA+˙x-˙A=A+˙z-˙A
52 ovex A+˙z-˙AV
53 51 4 52 fvmpt zXFz=A+˙z-˙A
54 53 ad2antll GGrpAXyXzXFz=A+˙z-˙A
55 49 54 oveq12d GGrpAXyXzXFy+˙Fz=A+˙y-˙A+˙A+˙z-˙A
56 37 44 55 3eqtr4d GGrpAXyXzXFy+˙z=Fy+˙Fz
57 1 1 2 2 5 5 12 56 isghmd GGrpAXFGGrpHomG
58 5 adantr GGrpAXyXGGrp
59 eqid invgG=invgG
60 1 59 grpinvcl GGrpAXinvgGAX
61 60 adantr GGrpAXyXinvgGAX
62 simpr GGrpAXyXyX
63 simplr GGrpAXyXAX
64 1 2 grpcl GGrpyXAXy+˙AX
65 58 62 63 64 syl3anc GGrpAXyXy+˙AX
66 1 2 grpcl GGrpinvgGAXy+˙AXinvgGA+˙y+˙AX
67 58 61 65 66 syl3anc GGrpAXyXinvgGA+˙y+˙AX
68 5 adantr GGrpAXxXyXGGrp
69 65 adantrl GGrpAXxXyXy+˙AX
70 8 adantrr GGrpAXxXyXA+˙xX
71 60 adantr GGrpAXxXyXinvgGAX
72 1 2 grplcan GGrpy+˙AXA+˙xXinvgGAXinvgGA+˙y+˙A=invgGA+˙A+˙xy+˙A=A+˙x
73 68 69 70 71 72 syl13anc GGrpAXxXyXinvgGA+˙y+˙A=invgGA+˙A+˙xy+˙A=A+˙x
74 eqid 0G=0G
75 1 2 74 59 grplinv GGrpAXinvgGA+˙A=0G
76 75 adantr GGrpAXxXyXinvgGA+˙A=0G
77 76 oveq1d GGrpAXxXyXinvgGA+˙A+˙x=0G+˙x
78 simplr GGrpAXxXyXAX
79 simprl GGrpAXxXyXxX
80 1 2 grpass GGrpinvgGAXAXxXinvgGA+˙A+˙x=invgGA+˙A+˙x
81 68 71 78 79 80 syl13anc GGrpAXxXyXinvgGA+˙A+˙x=invgGA+˙A+˙x
82 1 2 74 grplid GGrpxX0G+˙x=x
83 82 ad2ant2r GGrpAXxXyX0G+˙x=x
84 77 81 83 3eqtr3rd GGrpAXxXyXx=invgGA+˙A+˙x
85 84 eqeq2d GGrpAXxXyXinvgGA+˙y+˙A=xinvgGA+˙y+˙A=invgGA+˙A+˙x
86 simprr GGrpAXxXyXyX
87 1 2 3 grpsubadd GGrpA+˙xXAXyXA+˙x-˙A=yy+˙A=A+˙x
88 68 70 78 86 87 syl13anc GGrpAXxXyXA+˙x-˙A=yy+˙A=A+˙x
89 73 85 88 3bitr4d GGrpAXxXyXinvgGA+˙y+˙A=xA+˙x-˙A=y
90 eqcom x=invgGA+˙y+˙AinvgGA+˙y+˙A=x
91 eqcom y=A+˙x-˙AA+˙x-˙A=y
92 89 90 91 3bitr4g GGrpAXxXyXx=invgGA+˙y+˙Ay=A+˙x-˙A
93 4 11 67 92 f1o2d GGrpAXF:X1-1 ontoX
94 57 93 jca GGrpAXFGGrpHomGF:X1-1 ontoX