Step |
Hyp |
Ref |
Expression |
1 |
|
subgim.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
gimghm |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
4 |
|
ghmima |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
7 |
1 6
|
gimf1o |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑆 ) ) |
8 |
|
f1of1 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑆 ) → 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑆 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑆 ) ) |
10 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
11 |
9 10
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
13 |
|
ghmpreima |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( SubGrp ‘ 𝑅 ) ) |
14 |
3 13
|
sylan |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( SubGrp ‘ 𝑅 ) ) |
15 |
12 14
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
16 |
5 15
|
impbida |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) ) |