| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgim.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | gimghm |  |-  ( F e. ( R GrpIso S ) -> F e. ( R GrpHom S ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( F e. ( R GrpIso S ) /\ A C_ B ) -> F e. ( R GrpHom S ) ) | 
						
							| 4 |  | ghmima |  |-  ( ( F e. ( R GrpHom S ) /\ A e. ( SubGrp ` R ) ) -> ( F " A ) e. ( SubGrp ` S ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( ( F e. ( R GrpIso S ) /\ A C_ B ) /\ A e. ( SubGrp ` R ) ) -> ( F " A ) e. ( SubGrp ` S ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 7 | 1 6 | gimf1o |  |-  ( F e. ( R GrpIso S ) -> F : B -1-1-onto-> ( Base ` S ) ) | 
						
							| 8 |  | f1of1 |  |-  ( F : B -1-1-onto-> ( Base ` S ) -> F : B -1-1-> ( Base ` S ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( F e. ( R GrpIso S ) -> F : B -1-1-> ( Base ` S ) ) | 
						
							| 10 |  | f1imacnv |  |-  ( ( F : B -1-1-> ( Base ` S ) /\ A C_ B ) -> ( `' F " ( F " A ) ) = A ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( F e. ( R GrpIso S ) /\ A C_ B ) -> ( `' F " ( F " A ) ) = A ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( F e. ( R GrpIso S ) /\ A C_ B ) /\ ( F " A ) e. ( SubGrp ` S ) ) -> ( `' F " ( F " A ) ) = A ) | 
						
							| 13 |  | ghmpreima |  |-  ( ( F e. ( R GrpHom S ) /\ ( F " A ) e. ( SubGrp ` S ) ) -> ( `' F " ( F " A ) ) e. ( SubGrp ` R ) ) | 
						
							| 14 | 3 13 | sylan |  |-  ( ( ( F e. ( R GrpIso S ) /\ A C_ B ) /\ ( F " A ) e. ( SubGrp ` S ) ) -> ( `' F " ( F " A ) ) e. ( SubGrp ` R ) ) | 
						
							| 15 | 12 14 | eqeltrrd |  |-  ( ( ( F e. ( R GrpIso S ) /\ A C_ B ) /\ ( F " A ) e. ( SubGrp ` S ) ) -> A e. ( SubGrp ` R ) ) | 
						
							| 16 | 5 15 | impbida |  |-  ( ( F e. ( R GrpIso S ) /\ A C_ B ) -> ( A e. ( SubGrp ` R ) <-> ( F " A ) e. ( SubGrp ` S ) ) ) |