Step |
Hyp |
Ref |
Expression |
1 |
|
cnvimass |
|- ( `' F " V ) C_ dom F |
2 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
3 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
4 |
2 3
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
5 |
4
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
6 |
1 5
|
fssdm |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) C_ ( Base ` S ) ) |
7 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
8 |
7
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> S e. Grp ) |
9 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
10 |
2 9
|
grpidcl |
|- ( S e. Grp -> ( 0g ` S ) e. ( Base ` S ) ) |
11 |
8 10
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
12 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
13 |
9 12
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
14 |
13
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
15 |
12
|
subg0cl |
|- ( V e. ( SubGrp ` T ) -> ( 0g ` T ) e. V ) |
16 |
15
|
adantl |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` T ) e. V ) |
17 |
14 16
|
eqeltrd |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( F ` ( 0g ` S ) ) e. V ) |
18 |
5
|
ffnd |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> F Fn ( Base ` S ) ) |
19 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( ( 0g ` S ) e. ( `' F " V ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. V ) ) ) |
20 |
18 19
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( 0g ` S ) e. ( `' F " V ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. V ) ) ) |
21 |
11 17 20
|
mpbir2and |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` S ) e. ( `' F " V ) ) |
22 |
21
|
ne0d |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) =/= (/) ) |
23 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( a e. ( `' F " V ) <-> ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) ) |
24 |
18 23
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( a e. ( `' F " V ) <-> ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) ) |
25 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) |
26 |
18 25
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) |
27 |
26
|
adantr |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) |
28 |
7
|
ad2antrr |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> S e. Grp ) |
29 |
|
simprll |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> a e. ( Base ` S ) ) |
30 |
|
simprrl |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> b e. ( Base ` S ) ) |
31 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
32 |
2 31
|
grpcl |
|- ( ( S e. Grp /\ a e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( a ( +g ` S ) b ) e. ( Base ` S ) ) |
33 |
28 29 30 32
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( a ( +g ` S ) b ) e. ( Base ` S ) ) |
34 |
|
simpll |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> F e. ( S GrpHom T ) ) |
35 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
36 |
2 31 35
|
ghmlin |
|- ( ( F e. ( S GrpHom T ) /\ a e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
37 |
34 29 30 36
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
38 |
|
simplr |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> V e. ( SubGrp ` T ) ) |
39 |
|
simprlr |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` a ) e. V ) |
40 |
|
simprrr |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` b ) e. V ) |
41 |
35
|
subgcl |
|- ( ( V e. ( SubGrp ` T ) /\ ( F ` a ) e. V /\ ( F ` b ) e. V ) -> ( ( F ` a ) ( +g ` T ) ( F ` b ) ) e. V ) |
42 |
38 39 40 41
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( ( F ` a ) ( +g ` T ) ( F ` b ) ) e. V ) |
43 |
37 42
|
eqeltrd |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` ( a ( +g ` S ) b ) ) e. V ) |
44 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) |
45 |
18 44
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) |
46 |
45
|
adantr |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) |
47 |
33 43 46
|
mpbir2and |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) |
48 |
47
|
expr |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) ) |
49 |
27 48
|
sylbid |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( b e. ( `' F " V ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) ) |
50 |
49
|
ralrimiv |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) ) |
51 |
|
simprl |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> a e. ( Base ` S ) ) |
52 |
|
eqid |
|- ( invg ` S ) = ( invg ` S ) |
53 |
2 52
|
grpinvcl |
|- ( ( S e. Grp /\ a e. ( Base ` S ) ) -> ( ( invg ` S ) ` a ) e. ( Base ` S ) ) |
54 |
8 51 53
|
syl2an2r |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` S ) ` a ) e. ( Base ` S ) ) |
55 |
|
eqid |
|- ( invg ` T ) = ( invg ` T ) |
56 |
2 52 55
|
ghminv |
|- ( ( F e. ( S GrpHom T ) /\ a e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` a ) ) = ( ( invg ` T ) ` ( F ` a ) ) ) |
57 |
56
|
ad2ant2r |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( F ` ( ( invg ` S ) ` a ) ) = ( ( invg ` T ) ` ( F ` a ) ) ) |
58 |
55
|
subginvcl |
|- ( ( V e. ( SubGrp ` T ) /\ ( F ` a ) e. V ) -> ( ( invg ` T ) ` ( F ` a ) ) e. V ) |
59 |
58
|
ad2ant2l |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` T ) ` ( F ` a ) ) e. V ) |
60 |
57 59
|
eqeltrd |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( F ` ( ( invg ` S ) ` a ) ) e. V ) |
61 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) |
62 |
18 61
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) |
63 |
62
|
adantr |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) |
64 |
54 60 63
|
mpbir2and |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` S ) ` a ) e. ( `' F " V ) ) |
65 |
50 64
|
jca |
|- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) |
66 |
65
|
ex |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) |
67 |
24 66
|
sylbid |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( a e. ( `' F " V ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) |
68 |
67
|
ralrimiv |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) |
69 |
2 31 52
|
issubg2 |
|- ( S e. Grp -> ( ( `' F " V ) e. ( SubGrp ` S ) <-> ( ( `' F " V ) C_ ( Base ` S ) /\ ( `' F " V ) =/= (/) /\ A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) ) |
70 |
8 69
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( `' F " V ) e. ( SubGrp ` S ) <-> ( ( `' F " V ) C_ ( Base ` S ) /\ ( `' F " V ) =/= (/) /\ A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) ) |
71 |
6 22 68 70
|
mpbir3and |
|- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) e. ( SubGrp ` S ) ) |