Metamath Proof Explorer


Theorem islan2

Description: A left Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses islan.r R = D FuncCat E
islan.s S = C FuncCat E
islan.k No typesetting found for |- K = ( <. D , E >. -o.F F ) with typecode |-
Assertion islan2 Could not format assertion : No typesetting found for |- ( L ( F ( <. C , D >. Lan E ) X ) A -> L ( K ( R UP S ) X ) A ) with typecode |-

Proof

Step Hyp Ref Expression
1 islan.r R = D FuncCat E
2 islan.s S = C FuncCat E
3 islan.k Could not format K = ( <. D , E >. -o.F F ) : No typesetting found for |- K = ( <. D , E >. -o.F F ) with typecode |-
4 1 2 3 islan Could not format ( <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) -> <. L , A >. e. ( K ( R UP S ) X ) ) : No typesetting found for |- ( <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) -> <. L , A >. e. ( K ( R UP S ) X ) ) with typecode |-
5 df-br Could not format ( L ( F ( <. C , D >. Lan E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) ) : No typesetting found for |- ( L ( F ( <. C , D >. Lan E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) ) with typecode |-
6 df-br Could not format ( L ( K ( R UP S ) X ) A <-> <. L , A >. e. ( K ( R UP S ) X ) ) : No typesetting found for |- ( L ( K ( R UP S ) X ) A <-> <. L , A >. e. ( K ( R UP S ) X ) ) with typecode |-
7 4 5 6 3imtr4i Could not format ( L ( F ( <. C , D >. Lan E ) X ) A -> L ( K ( R UP S ) X ) A ) : No typesetting found for |- ( L ( F ( <. C , D >. Lan E ) X ) A -> L ( K ( R UP S ) X ) A ) with typecode |-