Metamath Proof Explorer


Theorem isprm

Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion isprm PPn|nP2𝑜

Proof

Step Hyp Ref Expression
1 breq2 p=PnpnP
2 1 rabbidv p=Pn|np=n|nP
3 2 breq1d p=Pn|np2𝑜n|nP2𝑜
4 df-prm =p|n|np2𝑜
5 3 4 elrab2 PPn|nP2𝑜