Metamath Proof Explorer


Theorem issald

Description: Sufficient condition to prove that S is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses issald.s φSV
issald.z φS
issald.x X=S
issald.d φySXyS
issald.u φy𝒫SyωyS
Assertion issald φSSAlg

Proof

Step Hyp Ref Expression
1 issald.s φSV
2 issald.z φS
3 issald.x X=S
4 issald.d φySXyS
5 issald.u φy𝒫SyωyS
6 3 eqcomi S=X
7 6 difeq1i Sy=Xy
8 7 4 eqeltrid φySSyS
9 8 ralrimiva φySSyS
10 5 3expia φy𝒫SyωyS
11 10 ralrimiva φy𝒫SyωyS
12 issal SVSSAlgSySSySy𝒫SyωyS
13 1 12 syl φSSAlgSySSySy𝒫SyωyS
14 2 9 11 13 mpbir3and φSSAlg