Metamath Proof Explorer


Theorem issetssr

Description: Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019)

Ref Expression
Assertion issetssr AVASA

Proof

Step Hyp Ref Expression
1 brssrid AVASA
2 relssr RelS
3 2 brrelex1i ASAAV
4 1 3 impbii AVASA