Description: Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issetssr | ⊢ ( 𝐴 ∈ V ↔ 𝐴 S 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brssrid | ⊢ ( 𝐴 ∈ V → 𝐴 S 𝐴 ) | |
| 2 | relssr | ⊢ Rel S | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 S 𝐴 → 𝐴 ∈ V ) |
| 4 | 1 3 | impbii | ⊢ ( 𝐴 ∈ V ↔ 𝐴 S 𝐴 ) |