Metamath Proof Explorer


Theorem issetssr

Description: Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019)

Ref Expression
Assertion issetssr ( 𝐴 ∈ V ↔ 𝐴 S 𝐴 )

Proof

Step Hyp Ref Expression
1 brssrid ( 𝐴 ∈ V → 𝐴 S 𝐴 )
2 relssr Rel S
3 2 brrelex1i ( 𝐴 S 𝐴𝐴 ∈ V )
4 1 3 impbii ( 𝐴 ∈ V ↔ 𝐴 S 𝐴 )