Description: Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | issetssr | ⊢ ( 𝐴 ∈ V ↔ 𝐴 S 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brssrid | ⊢ ( 𝐴 ∈ V → 𝐴 S 𝐴 ) | |
2 | relssr | ⊢ Rel S | |
3 | 2 | brrelex1i | ⊢ ( 𝐴 S 𝐴 → 𝐴 ∈ V ) |
4 | 1 3 | impbii | ⊢ ( 𝐴 ∈ V ↔ 𝐴 S 𝐴 ) |