Description: Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brssrres | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 ( S ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 ( S ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 S 𝐶 ) ) ) | |
| 2 | brssr | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 S 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) | |
| 3 | 2 | anbi2d | ⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 S 𝐶 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶 ) ) ) |
| 4 | 1 3 | bitrd | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 ( S ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶 ) ) ) |