Description: Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cnvssrres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ◡ ( S ↾ 𝐴 ) 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( S ↾ 𝐴 ) | |
| 2 | 1 | relbrcnv | ⊢ ( 𝐵 ◡ ( S ↾ 𝐴 ) 𝐶 ↔ 𝐶 ( S ↾ 𝐴 ) 𝐵 ) |
| 3 | brssrres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ( S ↾ 𝐴 ) 𝐵 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ) | |
| 4 | 2 3 | bitrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ◡ ( S ↾ 𝐴 ) 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ) |