Metamath Proof Explorer


Theorem istrkgc

Description: Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses istrkg.p P=BaseG
istrkg.d -˙=distG
istrkg.i I=ItvG
Assertion istrkgc G𝒢TarskiCGVxPyPx-˙y=y-˙xxPyPzPx-˙y=z-˙zx=y

Proof

Step Hyp Ref Expression
1 istrkg.p P=BaseG
2 istrkg.d -˙=distG
3 istrkg.i I=ItvG
4 simpl p=Pd=-˙p=P
5 simpr p=Pd=-˙d=-˙
6 5 oveqd p=Pd=-˙xdy=x-˙y
7 5 oveqd p=Pd=-˙ydx=y-˙x
8 6 7 eqeq12d p=Pd=-˙xdy=ydxx-˙y=y-˙x
9 4 8 raleqbidv p=Pd=-˙ypxdy=ydxyPx-˙y=y-˙x
10 4 9 raleqbidv p=Pd=-˙xpypxdy=ydxxPyPx-˙y=y-˙x
11 5 oveqd p=Pd=-˙zdz=z-˙z
12 6 11 eqeq12d p=Pd=-˙xdy=zdzx-˙y=z-˙z
13 12 imbi1d p=Pd=-˙xdy=zdzx=yx-˙y=z-˙zx=y
14 4 13 raleqbidv p=Pd=-˙zpxdy=zdzx=yzPx-˙y=z-˙zx=y
15 4 14 raleqbidv p=Pd=-˙ypzpxdy=zdzx=yyPzPx-˙y=z-˙zx=y
16 4 15 raleqbidv p=Pd=-˙xpypzpxdy=zdzx=yxPyPzPx-˙y=z-˙zx=y
17 10 16 anbi12d p=Pd=-˙xpypxdy=ydxxpypzpxdy=zdzx=yxPyPx-˙y=y-˙xxPyPzPx-˙y=z-˙zx=y
18 1 2 17 sbcie2s f=G[˙Basef/p]˙[˙distf/d]˙xpypxdy=ydxxpypzpxdy=zdzx=yxPyPx-˙y=y-˙xxPyPzPx-˙y=z-˙zx=y
19 df-trkgc 𝒢TarskiC=f|[˙Basef/p]˙[˙distf/d]˙xpypxdy=ydxxpypzpxdy=zdzx=y
20 18 19 elab4g G𝒢TarskiCGVxPyPx-˙y=y-˙xxPyPzPx-˙y=z-˙zx=y