Metamath Proof Explorer


Theorem istrl

Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 28-Dec-2020) (Revised by AV, 29-Oct-2021)

Ref Expression
Assertion istrl FTrailsGPFWalksGPFunF-1

Proof

Step Hyp Ref Expression
1 trlsfval TrailsG=fp|fWalksGpFunf-1
2 cnveq f=Ff-1=F-1
3 2 funeqd f=FFunf-1FunF-1
4 3 adantr f=Fp=PFunf-1FunF-1
5 relwlk RelWalksG
6 1 4 5 brfvopabrbr FTrailsGPFWalksGPFunF-1